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Abstract: Various studies suggest that the network deficit in default network mode (DMN) is
prevalent in Alzheimer’s disease (AD) and mild cognitive impairment (MCI). Besides DMN, some
studies reveal that network alteration occurs in salience network motor networks and large scale
network. In this study we performed classification of AD and MCI from healthy control considering
the network alterations in large scale network and DMN. Thus, we constructed the brain network from
functional magnetic resonance (fMR) images. Pearson’s correlation-based functional connectivity
was used to construct the brain network. Graph features of the brain network were converted to
feature vectors using Node2vec graph-embedding technique. Two classifiers, single layered extreme
learning and multilayered extreme learning machine, were used for the classification together with
feature selection approaches. We performed the classification test on the brain network of different
sizes including the large scale brain network, the whole brain network and the combined brain
network. Experimental results showed that the least absolute shrinkage and selection operator
(LASSO) feature selection method generates better classification accuracy on large network size, and
that feature selection with adaptive structure learning (FSAL) feature selection technique generates
better classification accuracy on small network size.

Keywords: Alzheimer’s disease; large-scale brain network; extreme learning machine

MSC: 37N25; 62P10

1. Introduction

Alzheimer’s disease (AD), which commonly appears in elderly people, is a progres-
sive neurodegenerative disease [1–4]. The neural dysfunction begins far earlier than the
visible clinical symptoms such as progressive cognitive impairment are manifested. These
symptoms are usually noticed after the age of 65. With the elderly population increasing,
the number of AD patients is also increasing, thus requiring more care takers and in turn
increasing medical expenses [5]. In such a scenario, the accurate diagnosis of the disease
at its early stage can slow down the disease’s effects, thereby reducing the significant
economic burden to the society created by this disease.

Conventional diagnosis is carried out based on the neurophysiological examinations
using different imaging technology such as MRI, fMRI, and PET images and a series of tests
on memory impairment, thinking skills and other clinical symptoms [6–8]. Studies suggest
that memory impairment is the most prominent symptom due to degeneration in medial
temporal cortex [9]. With the progression, the disease affects gradually the entorhinal
cortex, the hippocampus and the limbic system and finally the neocortical areas [10]. This
results in severe impairment in logical reasoning, planning and cognitive tasks.

The study of medial temporal atrophy usually provides the evidence of progression
of AD. Thus the studies are carried out by measuring the atrophy in terms of voxel-based,
vertex based and region of interest (ROI) based approaches. In AD and MCI subjects,
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atrophy of medial temporal lobe structures has been discovered in studies carried out
based on ROI-based MRI volumetric methods [11,12]. This atrophy in crucial areas of the
brain such as the hippocampus, the parahippocampal gyrus and the amygdala contributes
to differentiate the MCI and AD subjects from the control subjects [13]. The voxel-based
morphometry (VBM) is an alternative method to the ROI-based method that can assess
patterns of cortical atrophy. The VBM-based method is less laborious compared to ROI-
based method; thus it is used as the almost universal global volumetric method to measure
variances in the regional concentration of grey matter [14]. Studies based on this method
have revealed reduced grey matter volume in different regions of the brain in AD and
MCI subjects compared to healthy control (HC). These areas include the medial temporal
lobe, the frontal lobe, and the posterior cingulate gyrus [15,16]. The studies mentioned
above are carried out using structural MR images. On the other hand, fMRI detects the
changes in blood oxygenation and flow of the brain [17,18]. Brain activity is mapped in
terms of blood-oxygen-level dependent (BOLD) contrast. Blood flow to any particular
region of the brain increases with the increase in activity in that region. The fMRI provides
measurement on the involvement of different brain regions in particular brain activities [19].
Structural MRI primarily focuses on revealing the anatomical information of brain tissues,
while the fMRI shows the functional brain activities. Thus, we can have understandings
of the abnormalities of functional connectivity of the brain caused by the progression of
the MCI and AD [20,21]. Chen et al. [16] performed linear regression for the study of the
connection between variations in network connectivity. The Pearson product moment
correlation coefficients of pairwise of 116 ROIs were used as a feature. Similarly, Wang et al.
in [17] used a fMRI based feature to classify AD from HC and MCI. The correlation/anti-
correlation coefficients of two intrinsically anti-correlated networks were used as features
with Pseudo-Fisher Linear Discriminative Analysis (pFLDA) classifier. The outcome of all
these studies supports the hypothesis that the cognitive deficiency and decline in AD and
its prodromal stage are caused by the connectivity disruptions of the brain networks.

Additionally, various studies show that the connectivity of networks that are active
during the passive or resting state of the brain are disrupted due to AD [21]. This network
includes the default mode network (DMN), the central executive network (CEN), and the
salience networks (SN) [22,23].

Although changes are often seen in DMN, SN and CEN across the spectrum of AD
and MCI, Rs-fMRI results have shown that older people or people having MCI also exhibit
the functional connectivity alterations in these large scale networks.

Similarly, current studies demonstrate that functional connectivity alterations are
visible not only in DMN, but also in salience network and motor networks [24]. Thus, we
include other networks including DMN, salience network SN, sensory motor network, the
dorsal attention network, and auditory network and visual network to classify AD from
HC and MCI in the proposed study. Collection of this widespread brain network is known
as core large-scale brain network.

The proposed classification approach consists of the following major steps. We extract
the features from fMR images in terms of correlation matrix between different ROIs which
represents the brain network. The brain network includes whole brain network, core large-
scale brain network and combined network. Features of the brain network are in the form
of a graph where vertices are the brain regions and the edges are the correlation between
these vertices. The graph has non-Euclidian characteristics. On the contrary, conventional
machine learning algorithms work only on data having Euclidean or grid-like structure. In
order to remove the invariances of these structures we used graph embedding. The graph
embedding transforms graph data to a vector or set of vectors to overcome. The relevant
graph information together with the graph topology, vertex-vertex relationship, is captured
by embedding. In this study, the node2vec method was used. Next, we selected only the
relevant features and finally we used the multilayer-regularized extreme learning machine
(ML-RELM) classifier to classify the AD subjects from NC and MCI.



Mathematics 2022, 10, 1967 3 of 20

2. Materials
2.1. fMRI Dataset

fMRI data were taken from the Alzheimer’s disease neuroimaging initiative database
(ADNI) (http://adni.loni.usc.edu/, accessed on 27 October 2021) [25] for the study. The
ADNI began in 2004 with the goal of detecting AD at its pre-dementia stage and the
progression of disease with different biomarkers. Subjects were enrolled in the ADNI
database ranges from 55–90 years. A 3-Telsa Philips Achieva scanner was used to scan all
the participants. Data acquisition parameters are identical to previous work [7].

2.2. Subjects

In all, 95 subjects were selected from ADNI2 cohort. We have chosen the subjects
conferring to the availability of MRI and fMRI data. Consequently, the subjects having the
following demographic data as shown in Table 1, existing in ADNI2 cohort were considered
in our study.

Table 1. Demographic data of the subject cohort.

HC (31) MCI (31) AD (33)

Mean (Standard
Deviation)

Mean (Standard
Deviation)

Mean (Standard
Deviation)

Age 73.4 ± 4.5 74.1 ± 4.9 73.2 ± 5.6

Global CDR 0.05 ± 0.21 0.52 ± 0.2 0.97 ± 0.29

MMSE 27.5 ± 1.9 26.5 ± 2.12 20.6 ± 2.5

2.3. Data Preprocessing

We used CONN toolbox to process the fMRI and sMRI images [26]. The default prepro-
cessing pipe line was used to process the images. This pipeline starts with the readjustment
of slices. Next, unwrapping and slice-timing is performed, followed by identification of
outliers, segmentation and regularization and finally the functional smoothing. In the
functional realignment and unwrap step, CONN toolbox uses SPM12 realign [27] and
unwrap procedure [28] to realign the functional data. B-spline interpolation was used to
co-register and resample all scans to a reference image.

In the slice-timing correction SPM slice-timing correction (STC) procedure corrects
the temporal misalignment between different slices of functional data [29]. Similarly,
CONN uses artefact detection tools (ART) toolbox to identify the outlier scans. ART
tool box identifies the outlier scans obtained from the observation of the global bold
signals and the amount of subject motion in the scanner. Global Bold signals exceeding
5 standard deviations obtained from global mean and from wise displacement above 0.9 mm
are identified as outlier scans. Subsequently, anatomical as well as functional data are
normalized to standard MNI space. The functional and anatomical data are then segmented
to gray and white matter, CFS classes by means of SPM12 unified segmentation [29]. The
outlier detection step is followed by the normalization and segmentation step, while
SPM12 is used to normalize the functional and anatomical data to normalize in MNI
space and segment into GM, WM and CSF. For the functional data, mean BOLD signal
is taken as difference image and for structural data, T1 weighted volume is taken as
reference image [30]. Fourth-order spline interpolation was used to resample functional
and anatomical data to a defaulting 180 × 216 × 180-mm bounding box, along with 2 mm
isotropic voxels for functional data and 1 mm for anatomical data. Finally, the BOLD signal
noise and the impact of residual variability in functional and gray anatomy across subjects
were reduced by filtering the functional data. Spatial convolution with Gaussian kernel of
8-mm full width at half maximum (FWHM) was used for smoothing operation [31].

http://adni.loni.usc.edu/
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2.4. Functional Connectivity Measures

Functional connectivity measures compute the level of functional integration across
different brain regions on the basis of temporal correlations among the BOLD signal
fluctuations in these regions. These measures are typically computed either as seed-based
connectivity or ROI-to-ROI measures. Seed-based connectivity computes the functional
connectivity properties from with a pre-defined seed or ROI. These metrics are used when
one, or a few, individual regions are considered and the connectivity patterns between these
areas and the rest of the brain are analyzed in detail. Similarly, ROI-to-ROI connectivity
estimates functional connectivity patterns among different regions. These metrics are
used when entire networks of connections are considered for the simultaneous study of
these networks.

2.5. ROI-to-ROI Connectivity (RRC) Matrices

Functional connectivity between each pair of ROIs is calculated in terms of ROI-to-
ROI connectivity (RRC) matrices. All entries of this matrix are the correlation coefficients
calculated between a pair of ROIs BOLD time series.

r(i, j) =

∫
Ri(t)Rj(t)(∫

R2
i (t)dt

∫
R2

j (t)dt
)1/2 (1)

Z(i, j) = tan h−1(r(i, j))

where R is the BOLD time series in each ROI, r gives the connectivity matrix and each
element of this matrix is correlation coefficient. Similarly, Z represents the RRC symmetric
matrix and all entries of this matrix consist of Fisher-transformed correlation coefficient.

2.6. Proposed Framework

We performed the classification of AD from NC and MCI subjects in following four
major functional steps as shown in Figures 1–3:

1. Construction of brain networks including large scale brain network, whole brain
network and combined brain network.

2. Convert graph data to feature vector using graph embedding.
3. Perform the feature selection on embedded data.
4. Perform the classification using single layered regularized extreme learning machine

(SL-RELM) and multilayered regularized extreme learning machine (ML-RELM).

2.7. Construction of Brain Networks

We constructed two brain networks: (a) the whole brain network and (b) the core
large scale brain network. To construct the whole brain network from fMR images, the
raw fMR data are preprocessed as defined in the section of data preprocessing. The result
was that the entire brain was parcellated to 132 structurally homogenous ROIs, per the
FSL Harvard-Oxford atlas for the gray matter and subcortical regions. Computation of
the Fisher-transformed bivariate correlation coefficients between the time series of each
pair of ROIs was done to construct the ROI-to-ROI connectivity matrix. Similarly, for the
core large scale networks, eight resting state networks default mode (DMN), the fronto-
parietal network (FPN), the salience network (SAL), the dorsal attention network (DAN),
the sensorimotor network (SMN), the language network (LAN), the visual network (VIS),
and the cerebellar (CER) network with thirty-two ROI seed were used. As defined earlier,
the bivariate Pearson’s correlation measures were computed between the extracted mean
BOLD signal time courses of each pair of ROIs. Furthermore, Fisher’s transformation was
used to adapt the resultant coefficients to normally distributed scores to improve normality
assumptions.
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2.8. Graph-Embedding

We use node2vec [32] to learn vector representation of graph. node2vec is based on
the model for learning vector representation of words called Skip-Gram. This model learns
the context of word in the sentence. The network takes the word as input and is trained to
predict the adjacent words in a sentence with high probability. The Skip-Gram model is
applied to an series of graph nodes represented as random walks, which are generated by
a transform called random walks based on probability and weighted by graph edge.

For graph having nodes, x1, x2, x3, t, and v the current random walk position is at
node v. The random walk has traversed the edge (t, v) at node t. The random walk has
four options to traverse from node v to traverse back to t, or traverse to x1 which is breath
first with respect to t or move to x2 or x3 which is DFS with respect to t. The traverse from
node v to its neighboring node is done according to unnormalized transition probability.
More formally, the transition probabilities πvx on edge (t, v) with the static edge weight
wvx is estimated based on search bias α such that πvx = αpq(t, x).wvx. Here α is defined by
two parameters p and q.

αpq(t, x) =


1
p , i f dtx = 0

1, i f dtx = 1
1
q , i f dtx = 2

(2)

Here, dtx represents the shortest distance from node t to x.
The parameter is the return parameter that determines the likelihood of sampling the

node again. For a given node, use of BFS or DFS is determined by in-out parameter. It is
the ratio of BFS versus DFS. If q > 1, it is more likely to sample the nodes around the node
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by the random walk. After the random walk generation, the vector representing respective
node is predictable using the Skip-Gram model.

3. Feature Selection
3.1. Least Absolute Shrinkage and Selection Operator (LASSO)

LASSO [33] is a prevailing process used to eliminate unimportant features. Regular-
ization and feature selection are the main tasks of LASSO which reduces the remaining
sum of squares using ordinary least square regression (OLS). During the minimization
process, a restraint of the total absolute values of the parameters in the model are placed.
The following minimization function is used to compute the model coefficient β.

RSSLASSO(βi, β0) =
argmin

β

[
n

∑
i=1

(yi − (βixi + β0))
2 + α

k

∑
j=1

∣∣β j
∣∣] (3)

Here,xi represents the feature data. βj is the coefficient of the j-th feature. α is the
hyperparameter known as regularization parameter. The non-negative regularization
parameter controls the intensity of penalty. With sufficiently large value of α, coefficients
are constrained to be zero thus producing relatively a smaller number of features. In
contrast with smaller value of α the model resembles the OLS thus resulting larger number
of features.

3.2. Features Selection with Adaptive Structure Learning (FSASL)

FSASL is an unsupervised method that achieves data manifold learning and feature
selection [34]. FSASL employs the adaptive structure of data to construct the global as well
as local learning. Moreover, the substantial features are nominated by integrating both local
and global learning with L2,1-norm regularizer. The global structure of data is extracted
by using the sparse reconstruction coefficients. In sparse representation, every sample
of data xi is estimated as a linear combination of remaining samples, and the optimal
sparse combination weight matrix. The local learning method directly acquires a Euclidean
distance induced probabilistic neighborhood matrix.

min
W,S,P

(
‖WTX−WTXS‖2 + α‖S‖1

)
+β

n
∑
i,j

(
‖WTxi −WTxj‖2Pij + µP2

ij

)
+ γ‖W‖21

s.t.Sii = 0, P1n = 1n, P ≥ 0, WTXXTX = I

(4)

Here, α balances the sparseness and the reconstruction error. Two parameters β and
γ are used to regularize global and local learning in the first and second group and the
sparsity of feature selection matrix in the third group, respectively. Additionally, S guides
the exploration of appropriate global feature and P describes the local neighborhood of
data sample xi.

3.3. Local Learning and Clustering Based Feature Selection (LLCFS)

LLCFS selects the features based on clusters [35]. The k-nearest neighbor graph is
constructed to learn the adaptive data structure with selected features in the weighted
feature space. The joint clustering and feature weight learning is performed by solving the
following problem.

min
Y,{W ′ ,b′}n

i=1,z

n
∑

i=1

c
∑

c′=1

[
∑

xj∈ℵsi

β
(

Yic′ − xT
j Wi

c′ − bi
c′

)2
+
(
Wi

c′
)Tdiag

(
z−1)Wi

c′

]
s.t. 1T

d z = 1, z > 0

(5)

where z is the feature weight vector and ℵxi is the k-nearest neighbor of xi based on z
weighted features.
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3.4. Pairwise Correlation-Based Feature Selection (CFS)

CFS selects features based on the correlation of features with the class label [36]. Highly
correlated features are selected and features with low correlation are ignored. This algo-
rithm uses the heuristic evaluation function to rank the features. The evaluation function
assesses subsets made of attribute vectors. The attribute vectors included in these subsets
are independent of each other. On the other hand, further features should be considered, as
they are immensely correlated with one or additional number of other features.

4. Classification
4.1. Extreme Learning Machine (ELM)

ELM is a feedforward neural network [37–41] as shown in Figure 4. This single
layered neural network chooses the hidden layer weights randomly and the output layer
parameters are determined analytically using Moore-Penrose inverse [38]. Thus, it doesn’t
require gradient based backpropagation to tune the hidden layer parameters. This results
in extremely time efficient training, which is more appropriate for analyzing the big data.
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This ELM generates the hidden layer parameters wi and biases bi randomly prior to
training. Once the input x is fed to network the hidden layer generates output, which is
expressed as

hi = g
(

wT
i xj + bi

)
, wi ∈ Rd, bi ∈ R

where hi(x) is the output of hidden layer node generated. Here g represents the activation
function. The final output of the network is expressed as

YL(x) =
L

∑
i=1

βihi(x) = h(x)βi (6)

β = [β1, . . . , βL]
T is the output layer weight matrix. For N training samples

(
xj, tj

)N
j=1.

The ELM can approximate these N samples with zero error

Hβ = T (7)

Here, H represents the hidden layer output matrix and T represents output label of
training data matrix. The matrix β is estimated as

β = H+T (8)
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Here, H+ denotes the Moore-Penrose generalized inverse of the matrix H. Additionally,
to improve the steadiness and consistency of the matrix inverse calculation inappropriate
nodes are clipped by adding a constant I/C during estimation of H+. Thus, the resulting
output layer parameter can be estimated as,

β =

(
I
C
+ HT H

)−1
HTT (9)

Due to the shallow architectures, feature learning using ELM methods may not be
effective for applications, even with a large number of hidden nodes. In this work, we
constructed multilayer ELM. Each layer is connected to a subsequent layer in feedforward
fashion, as shown in Figure 5. The overall training procedure is described in Algorithm 1.

Algorithm 1. Pseudocode for multiple hidden layer ELM.

Input: feature matrix X, output matrix T, regularization C for all layers, input weights w, biases
and activation g and the number of layers n
Output: hidden layer feature representation H f inal and output weight β

Step1: Let X(1) = X, calculate H(1) ← g
(

w(1)x + b(1)
)

Step2: X(2) = H(1)

For i = 2 : n− 1 do
Step3: calculate H(i) ← g

(
w(i)x + b(i)

)
Step4: X(i+1) = H(i)

Step5: Let i = n, calculate H f inal and β

H f inal ← g
(

w(n)x + b(n)
)

β =

(
I
C +

(
H f inal

)T(
H f inal

))−1(
H f inal

)T
T

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 5. Architecture of Multiple hidden layer extreme learning machine. 

Algorithm 1. Pseudocode for multiple hidden layer ELM. 

Input: feature matrix , output matrix , regularization  for all layers, input 
weights , biases and activation  and the number of layers  

Output: hidden layer feature representation  and output weight  

Step1: Let , calculate  

Step2:  

For  

    Step3: calculate   

    Step4:  

Step5: Let , calculate  and  

         

         

4.2. Experiment and Performance Evaluation 

In this section, we explain the performance evaluation of both the RELM and ML-
RELM classifier with different data models. We have observed the performance of the 
proposed algorithm by comparing the test result of three different models, namely large 
scale brain network, whole brain network and combined network. The size of large scale 
brain is of 32 × 32, the whole brain network is 132 × 132, and the combined network is of 
164 × 164. We used four

 
different feature selection methods together with designated clas-

sifiers to perform the binary classification. Three-performance metrics, namely, accuracy, 
sensitivity and specificity, were used to evaluate the classifier performance. Accuracy 
quantifies the percentage of correctly classified subjects. While the rate of true positive 
(TP) and rate of true negative (TN) are measured by sensitivity and specificity. Both of 
these portions signify the correctly recognized subjects. Similarly, false positive (FP) and 
false negative (FN) indicate the incorrectly classified subjects. A 10-fold cross validation 
technique is employed to evaluate the overall performance of classifier and feature selec-
tion methods. In the first step, we separated the subjects into ten equally sized groups 
(folds), each containing 10% of subjects the test set and 90% as training set. Next, rank 

Figure 5. Architecture of Multiple hidden layer extreme learning machine.

4.2. Experiment and Performance Evaluation

In this section, we explain the performance evaluation of both the RELM and ML-
RELM classifier with different data models. We have observed the performance of the
proposed algorithm by comparing the test result of three different models, namely large
scale brain network, whole brain network and combined network. The size of large scale
brain is of 32 × 32, the whole brain network is 132 × 132, and the combined network is
of 164 × 164. We used four different feature selection methods together with designated
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classifiers to perform the binary classification. Three-performance metrics, namely, accuracy,
sensitivity and specificity, were used to evaluate the classifier performance. Accuracy
quantifies the percentage of correctly classified subjects. While the rate of true positive
(TP) and rate of true negative (TN) are measured by sensitivity and specificity. Both of
these portions signify the correctly recognized subjects. Similarly, false positive (FP) and
false negative (FN) indicate the incorrectly classified subjects. A 10-fold cross validation
technique is employed to evaluate the overall performance of classifier and feature selection
methods. In the first step, we separated the subjects into ten equally sized groups (folds),
each containing 10% of subjects the test set and 90% as training set. Next, rank based feature
selection was performed on the training sets. We used four different algorithms LASSO,
FSASL, LLCFS and CFS to rank the features. Classifier was trained using the top-ranked
features. Separate feature selections were made for each training and test set of data to
reduce selection bias during cross validation. By using most highly ranked features, we
computed averaged cross-validated accuracy along with standard deviation. Calculated
mean accuracy and standard deviation of highest ranked features for different feature
selection as depicted in Tables 2–10. These tables comprise performance of classifier with
four different feature selection methods. Bold values in each table indicate the maximum
value of accuracy, sensitivity and specificity. Additionally, mean sensitivity and specificity
along with corresponding standard deviation are also included. Tables 2–4 illustrate the
classification results based on SL-RELM classifier for the whole brain network. Tables 5–7
show the classification results using same classifier for large scale brain network. Similarly,
Tables 8–10 depict the classification results for the combined brain network. Table 3 shows
the classification of AD against HC using the whole brain network data. The FSASL feature
selection method generates the highest mean accuracy of 86.51%, mean sensitivity of 85.25%
and mean specificity of 88.08%. Similarly, Tables 3 and 4 depict the classification of HC
against MCI and AD against MCI using SL-RELM. FSASL generates the highest mean
accuracy for the classification HC against MCI and for the classification MCI against AD.
As shown in Table 3, the highest mean accuracy is 96.14 (±1.71) for the classification HC
against MCI classification. Similarly, the highest accuracy of 95.19 (2.63) is generated for
MCI against AD classification as shown in Table 4. Moreover, a high F-score is also reported
for all three classifications (0.92) for HC against AD, 0.99 for HC against MCI, 1 for AD
against MCI using FSASL and LASSO feature section methods. Similarly, the comparison of
classification of HC, MCI and AD with the large scale brain network classifier with different
feature selection methods are shown in Tables 5–7. As in the whole brain network, better
results in terms of all three-performance metrics were obtained using the FSASL feature
selection technique. As depicted in Table 5, the classifier generated the accuracy of 95.42%
specificity of 94.5% and sensitivity of 96.41% and F-score of 0.97 for AD against HC. Table 6
shows the highest mean accuracy of 96.47%, specificity of 95.33%, sensitivity 97.66% of and
F-score of 0.97 were obtained for classification of HC against MCI. Similarly, Table 7 depicts
the performance of AD against MCI. The classifier generates the highest mean accuracy of
98.38%, sensitivity of 97.16%, specificity of 99.66% and F-score of 1. Tables 8–10 show the
results and comparison of HC, MCI and AD with the combined brain network. As shown
in Table 8, we obtained the accuracy of highest 85.82% sensitivity of 85.0% and specificity
of 88.0% and F-score of 0.93 for AD against HC using the FSASL feature selection method.
In Table 9 the highest mean accuracy of 96.75%, sensitivity of 97.75%, specificity 95.83% of
and F-score of and 0.94 were obtained for HC against MCI classification using the LASSO
feature selection. Similarly, the classification performance of AD against MCI is depicted in
Table 10. The highest mean accuracy of 86.35%, sensitivity of 85.08%, specificity of 87.5%
and F-score of 0.86 were obtained. Maximum values of performance metrics are indicated
by bold values in each table.
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Table 2. Classification performance for AD against HC using SL-RELM classifier on whole brain
network using different feature selection methods.

Feature
Selection
Method

Performance
Metrics Accuracy Sensitivity Specificity F-Measure

LASSO
Mean (%) 82.06 78.58 85.58

0.86
Standard deviation 2.67 2.751 4.25

FSASL
Mean (%) 86.51 85.25 88.00

0.92
Standard deviation 3.670 6.18 4.75

LLCFS
Mean (%) 85.24 78.66 91.91

0.85
Standard deviation 4.06 7.59 5.65

CFS
Mean (%) 86.28 82.33 90.08

0.86
Standard deviation 3.27 6.51 4.88

Table 3. Classification performance for HC against MCI using SL-RELM classifier on whole brain
network using different feature selection methods.

Feature
Selection
Method

Performance
Metrics Accuracy Sensitivity Specificity F-Measure

LASSO
Mean (%) 90.64 83.33 98.08

0.995
Standard deviation 2.05 4.27 3.19

FSASL
Mean (%) 96.14 95.16 97.08

0.97
Standard deviation 1.71 2.74 1.89

LLCFS
Mean (%) 85.40 81.0 89.83

0.95
Standard deviation 4.03 4.33 6.67

CFS
Mean (%) 89.09 86.33 92.00

0.89
Standard deviation 4.10 6.54 4.12

Table 4. Classification performance for MCI against AD using SL-RELM classifier on whole brain
network using different feature selection methods.

Feature
Selection
Method

Performance
Metrics Accuracy Sensitivity Specificity F-Measure

LASSO
Mean (%) 90.05 93.33 86.67

0.96
Standard deviation 2.50 3.19 3.98

FSASL
Mean (%) 95.19 94.16 96.16

1
Standard deviation 2.63 3.62 2.81

LLCFS
Mean (%) 86.86 87.16 86.5

0.79
Standard deviation 5.51 6.67 6.66

CFS
Mean (%) 87.91 88.41 87.58

0.93
Standard deviation 2.87 6.81 6.16
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Table 5. Classification performance for AD against HC using SL-RELM classifier on large scale brain
network using different feature selection methods.

Feature
Selection
Method

Performance
Metrics Accuracy Sensitivity Specificity F-Measure

LASSO
Mean (%) 84.06 81.58 86.75

0.81
Standard deviation 3.48 4.48 5.32

FSASL
Mean (%) 95.42 94.5 96.41

0.97
Standard deviation 2.14 2.58 2.48

LLCFS
Mean (%) 85.01 81.66 88.41

0.93
Standard deviation 3.86 5.37 5.29

CFS
Mean (%) 88.38 84.25 92.41

0.91
Standard deviation 2.36 4.25 2.55

Table 6. Classification performance for HC against MCI using SL-RELM classifier on large scale brain
network using different feature selection methods.

Feature
Selection
Method

Performance
Metrics Accuracy Sensitivity Specificity F-Measure

LASSO
Mean (%) 90.12 83.0 97.16

0.97
Standard deviation 1.89 3.89 2.69

FSASL
Mean (%) 96.47 95.33 97.66

0.97
Standard deviation 1.46 2.122 1.61

LLCFS
Mean (%) 87.02 82.25 91.75

0.82
Standard deviation 4.37 4.02 6.55

CFS
Mean (%) 88.38 84.25 92.42

0.91
Standard deviation 2.36 4.25 2.56

Table 7. Classification performance for MCI against AD using SL-RELM classifier on large scale brain
network using different feature selection methods.

Feature
Selection
Method

Performance
Metrics Accuracy Sensitivity Specificity F-Measure

LASSO
Mean (%) 84.95 86.75 83.08

0.84
Standard deviation 4.81 5.188 5.18

FSASL
Mean (%) 98.38 97.16 99.66

1
Standard deviation 1.51 2.69 1.05

LLCFS
Mean (%) 88.83 90.91 87.0

0.91
Standard deviation 4.60 3.89 8.30

CFS
Mean (%) 88.07 87.66 88.5

0.97
Standard deviation 4.18 7.70 6.22
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Table 8. Classification performance for AD against HC using SL-RELM classifier on Combined brain
network using different feature selection methods.

Feature
Selection
Method

Performance
Metrics Accuracy Sensitivity Specificity F-Measure

LASSO
Mean (%) 84.88 81.83 88.0

0.93
Standard deviation 1.76 3.68 4.12

FSASL
Mean (%) 85.82 85.0 86.91

0.86
Standard deviation 2.88 5.29 4.332

LLCFS
Mean (%) 82.58 82.41 82.91

0.88
Standard deviation 2.83 3.75 5.43

CFS
Mean (%) 70.15 70.66 69.33

0.73
Standard deviation 7.37 6.28 11.26

Table 9. Classification performance for MCI against AD using SL-RELM classifier on Combined brain
network using different feature selection methods.

Feature
Selection
Method

Performance
Metrics Accuracy Sensitivity Specificity F-Measure

LASSO
Mean (%) 96.75 97.75 95.83

0.94
Standard deviation 1.52 2.22 3.04

FSASL
Mean (%) 90.12 91.16 89.25

0.94
Standard deviation 3.64 5.58 4.39

LLCFS
Mean (%) 78.57 81.0 76.0

0.78
Standard deviation 3.06 5.93 3.98

CFS
Mean (%) 74.03 73.58 74.5

0.73
Standard deviation 5.13 9.77 9.74

Table 10. Classification performance for HC against MCI using SL-RELM classifier Combined brain
network using different feature selection methods.

Feature
Selection
Method

Performance
Metrics Accuracy Sensitivity Specificity F-Measure

LASSO
Mean (%) 86.35 85.08 87.5

0.86
Standard deviation 3.00 5.037 4.79

FSASL
Mean (%) 88.19 91.58 84.91

0.93
Standard deviation 3.10 4.77 3.35

LLCFS
Mean (%) 82.5 81.66 83.16

0.86
Standard deviation 4.02 6.56 5.14

CFS
Mean (%) 70.55 65.83 75.25

0.96
Standard deviation 6.01 5.77 7.61

From all these results, the majority of highest accuracy were obtained using FSASL
feature selection method. Thus, for the classification of the graph embedded data using
SL-RELM, this feature selection method was an ideal choice. In our experiments we used
three sizes 32 × 32 for the large scale brain network, 132 × 132 for the whole brain network
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and 164 × 164 for the combined brain network. FSASL generated better results for the two
small sized brain networks, the combined brain network, and the whole brain network

By contrast, for the large sized brain network LASSO generates better results in terms
of accuracy, sensitivity and specificity. Similarly, Figures 6–8 show the binary classification
results using ML-RELM classifier. Similar to the SL-RELM, the mean accuracy and the
standard deviation of highest ranked features are calculated for different feature selection
methods. As in SL-RELM better results are obtained using the FSASL feature selection
method except for classification of MCI from HC and AD from MCI using the whole brain
network and AD from MCI using the combined brain network.

The performance of the ML-RELM classifier is highly influenced by the number
of hidden layer nodes used. In this experiment, we obtained that the highly accurate
performance results were generated using 1000 number of hidden layers. Correspondingly,
the parameters p and q were set to correspond to localized random walks. Keeping the
value of p smaller and value of q larger, the random walk was easily sampled to the high-
order immediacy. Therefore,p and q were randomly selected and graphed embedding
p = 0.1 and q = 1.6.
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5. Discussion

There have been a number of studies conducted using rs-fMRI to classify AD and MCI
from healthy controls. As it can be seen in Tables 11 and 12, different classifiers combine
with different feature measures reported up to 95% for AD against HC and up to 72.58%
to and MCI against HC. It can clearly be seen that the number of subjects directly affects
the accuracy of these tests. Accuracy decreases with increase in number of subjects. In our
studies, we have used the same MCI and HC subjects from the ADNI2 cohort.

Table 11. Comparison of HC versus AD classification with recent works.

Number of Subjects
Classification Method fMRI Features

Classification
Accuracy (%)AD HC

34 45 Naïve Bayes Directed graph features [20] 93.3

77 173 Area under curve
Combination of functional connectivity matrices,
functional connectivity dynamics, Amplitude of

low-frequency fluctuation [42]
85

12 12 Linear Discriminant
Analysis

Default mode network and salience network map
difference [43] 92

67 76 Support Vector Machine ROI-to ROI correlation with significant difference [44] 92.9

Table 12. Comparison of HC versus MCI classification with recent works.

Number of Subjects
Classification Method fMRI Features

Classification
Accuracy (%)MCI HC

31 31 Support Vector Machine Covariance matrix of whole brain
network [45] 62.90

31 31 Support Vector Machine fMRI time series of ROI [46] 66.13

91 79 Deep Auto Encoder ROI-to ROI Correlation [47] 86.5

31 31 Support Vector Machine Mean time series of ROI [48] 72.58

As stated in earlier section, the highest value of accuracy is obtained for the classi-
fication of AD in proposed work which is 93.957% with the combination of FSAL and
ML-RELM in large scale network. In comparison to the results of MCI against HC, the
results we obtained in our study outperform all the state-of-the-art approaches. Though,
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direct comparison of performance with other studies is not considered fair and reliable
as the datasets, preprocessing pipelines, features, and classifiers considered for each are
distinct. Most of works [43–47] have used subjects that are less than or nearly equal to 30 in
each subject class due to the availability of fMRI data in ADNI2 cohort. Like in all other
studies, we have performed classification and made conclusion using ADNI2 cohort with
nearly equal number of subjects with previous studies and the cross validation was also
done using these datasets.

6. Limitations

The primary goal of this study is to detect the progression of AD using fMRI alone
from ADNI2 cohort. The first and foremost limitation imposed during the study is the
limited sample size of ADNI2 (33 AD, 31 MCI, and 31 HC). With this sample size ADNI2
does not adequately represent the entire population. As a result, we cannot guarantee the
generalizability of the results we obtained for other groups.

7. Conclusions

It is extensively accepted that the early detection of AD and MCI plays a significant role
in taking the preventive measures and stopping the further progression of AD in the future.
Hence, the precise diagnosis of different stages of AD progression is crucial. According to
leading experts, detecting AD and MCI at an early stage can contribute to taking preventive
measures and delaying the future progression of AD. Consequently, accurate classification
of the various stages of AD progression is also crucial. In this study, we demonstrated
that graph-based features from fMR images can be used for the classification of AD and
MCI from HC. We tested the proposed approach on three different network modes ranging
from a large scale network, a whole brain network and a combined network. We obtained
better classification accuracy on the large scale network and on the combined network. This
result suggests that the large scale network is composed of low number of nodes and edges.
However, these nodes and edges carry distinct features required to classify Alzheimer’s
disease from healthy and mildly cognitively impaired subjects. For large networks, LASSO
performed better among other methods, while FSASL worked better for small networks.
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